
The Defect of Language
Tables

Ulrike Brandt∗

and

Hermann K.-G. Walter†

15th November 2005

Technical Report TUD-CS-2005-5

∗brandt@informatik.tu-darmstadt.de
†walter@informatik.tu-darmstadt.de

List of Tables

Contents

1 Introduction 3

2 Basic notations and preliminary results 4

3 Infinite languages over arbitrary alphabets 8

4 Languages over one-letter alphabets 15

5 Finite languages 20

6 Concluding remarks 25

References 26

List of Tables

1 Forced completion with intermediate steps. 6
2 (m,m)−R− L− table A′′ with m = 64, |u| = 14, k = 5. 10
3 Tr−2z+1 and Tr−2z, top border . 12
4 Tr+2z−1 and Tr+2z, bottom border . 13
5 Acomp . 14
6 “puzzle”-pieces . 15
7 A (σ, m) . 16
8 Connection of “puzzle”-pieces with connection points 17
9 Padding . 18
10 Stripe component . 20
11 “Rook-tour”constructors . 21
12 Complete “rook-tour”with stripes . 22
13 Possibilities (represented by dotted lines) to annex a vertical (horizontal)

w to a horizontal (vertical) w. 24

2

1 Introduction

Language tables are two dimensional data structures build up in a “crossword puzzle”
manner. The concept is introduced for arbitrary formal languages. By this approach the
global structure of the pattern given by a table is controlled vertically and horizontally
by the syntactical structure of the given language.

Moreover with respect to the row-column-grid the set of all alphabetic entries has to be
connected.

We study at length the “density”of packing the alphabetic entries. There the minimal
number of empty places we are forced to use, the defect of the language, is our main
measure. It indicates how compact a pattern can be designed for a given language.

Going to densities we are concerned with asymptotic behaviour.

We show that there are four main cases:

• infinite languages over arbitrary alphabets

• infinite languages over one-letter alphabets

• finite languages over arbitrary alphabets

• finite languages over one-letter alphabets

Every case needs different constructions and methods.

Infinite languages over arbitrary alphabets allow in the worst case a density of 75% in
the limit, the bound is sharp.

Infinite languages over one-letter alphabets allow always a density of 100% in the limit.
For finite languages over arbitrary alphabets the bounds depend on the largest word
in the language. Again we show sharp bounds, especially with respect to one-letter
alphabets. For decidability results on this topic we refer the reader to [1].

3

2 Basic notations and preliminary results

2 Basic notations and preliminary results

Consider an alphabet X, then X∗ is the free monoid over X. Elements w ∈ X∗ are
called words. If w = x1 . . . xn is a word and 1 ≤ i ≤ n, we denote by (w)i = xi the i-th
character of w. Especially first(w) = (w)1 and last(w) = (w)n. |w| = n is the length of
w. For any x ∈ X we denote by |w|x the number of occurrences of x in w.

The special symbol 0 /∈ X denotes empty“entries”, therefore we consider (n, m)-matrices
A over X ∪ 0. For all 1 ≤ i ≤ n denote by RAi the word RAi = A[i, 1] . . . A[i, m]. In the
same way we can define CAi by CAi = (RAT)i (1 ≤ i ≤ n).

To any (n, m)-matrix A we can associate the graph GA with nodes {(i, j)|A[i, j] 6= 0, 1 ≤
i ≤ n, 1 ≤ j ≤ m} and vertices {(i, j) → (k, l)| |i−k|+|j−l| = 1, A[i, j] 6= 0, A[k, l] 6= 0}.
We call A connected if and only if GA is connected.

Definition 2.1 Let L ⊆ X∗ be a language, A a matrix over X ∪ 0 of size (n,m). Then
A is called a R-L-table iff {RAi|1 ≤ i ≤ n} ⊆ 0∗ · ((L ∪X) · 0+)∗ · ((L ∪X) ∪ 0∗).

Definition 2.2 We call A a L-table iff A and AT are R-L-tables and A is connected.

Before dealing with examples two further definitions are necessary.

Definition 2.3 If A is a (n, m)-matrix then def (A) =] {(i, j) |A[i, j] = 0} is the defect of A.

In the quadratic case we extend this function to L in the following way:

Definition 2.4 def (n, L) = min{def (A) |A is a L-table of size (n, n)}.

Since def(n, L) may be hard to compute, we introduce asymptotic measures, too.

Definition 2.5 δ(L) = lim sup def (n, L) /n2 and δ(L) = lim inf def (n, L) /n2.

Note that 0 ≤ δ(L) ≤ δ(L) ≤ 1.

Example 2.1 If X = {a} is an one-letter alphabet and L ⊆ X∗ is an infinite language,
then obviously, for any word w ∈ L there exists a L-table A of size |w| with def(A) = 0,
hence δ(L) = 0.

Example 2.2 Consider X = {a, b} and L = {ab}. Obviously one of two best L-tables of
size n has def(An) = n2 − 2n + 1, hence δ(L) = δ(L) = 1.

4

Example 2.3 Consider X = {a, b} and L = (ab)∗. Consider a L-table A of size n ≥ 4.
To estimate def(A) we consider the first two columns. Obviously

n = |CA1|a + |CA1|b + |CA1|0 and

|CA2|0 ≥ |CA1|b and
n

2
≥ |CA1|a

By this

|CA1|0 + |CA2|0 ≥ n− (|CA1|a + |CA1|b) + |CA1|b ≥
n

2
.

The same argument is true for the last two columns, the first and the last two rows.
Since 16 places may be counted twice we get

def(A) ≥ 2n− 16.

On the other hand consider the following construction for n = 2m + 2 (m ≥ 0).

An =



0 0 a 0 a 0 a b
0 a b a b . . . a b 0
a b a b a . . . b a b
...

...
...

0 a b a b . . . a b 0
a b a b a . . . b a b
b 0 b 0 b . . . 0 b 0


.

Obviously,
def(An) = 2n− 2.

By this we get
δ(L) = δ(L) = 0.

2

We now exhibit a language L with δ(L) ≥ 1
4
.

Theorem 2.1

δ((a2b2)∗) ≥ 1

4

Proof Consider a (a2b2)∗-table A of size n. Without loss of generality we assume n is
even and n ≥ 2. We want to show, that any (2,2)-submatrix of A contains at least
one empty entry. By this we get immediately def(A) ≥ n2/4, dividing A into n2/4
(2,2)-submatrices.

Assume, to the contrary, that there exist a (2,2)-submatrix A′ of A with no ”0”-
entry. Let

A′ =

[
A [i, j] A [i, j + 1]

A [i + 1, j] A [i + 1, j + 1]

]
·

5

2 Basic notations and preliminary results

Choose i to be minimal. Studying all cases asserts that we can find a (2,2)-
submatrix A′′ of A with no ”0”-entry, which is positioned in row i-1, contradicting
the minimality of i. Table 1 shows all cases. The ”forced” A′′ is represented by
dotted line-boxes together with intermediate steps. 2

Table 1: Forced completion with intermediate steps.

6

Example 2.4 Consider Ln = {a3, an, an−1, an−2}. We assume n > 3. Suppose n is odd
(if n is even, a slightly different construction is possible). Construct the matrix

which is an L-table of size k · n + (k − 1), k · n + (k − 1), if the construction is done
k-times.

def(Ak) = 4 · k2 ·
⌊n

2

⌋
+

⌊n

2

⌋
· (k − 1)2 + (k − 1)2

− 4(k − 1) · 2
⌊n

2

⌋
+ 4

⌊n

2

⌋
This means

δ(L) ≤ 2n

(n + 1)2
+

n
2

+ 1

(n + 1)2
≤ 5

2n

7

3 Infinite languages over arbitrary alphabets

3 Infinite languages over arbitrary alphabets

We want to show that theorem 2.1 is the best possible result for infinite languages.

Theorem 3.1 If L ⊆ X∗ is an infinite language, then

δ(L) ≤ 1

4
.

Before going into the details of the proof the following observation is necessary.

Observation If L is infinite, then there exist x, y ∈ X such that
{w ∈ L| first (w) = x and last (w) = y} is infinite.

Proof Obviously:

L =
⋃

x,y∈X

{xvy| xvy ∈ L, v ∈ X∗}

Hence, one of these components must be infinite. 2

Now we can assume without loss of generality that for all words w, w′ ∈ L : first (w) =
first (w′) and last (w) = last (w′) holds.

For the proof we need a special shift-operation. If u ∈ L and k ≥ 1, then for each
w ∈ 0∗(u0k)∗u0∗ with |w| = m we define:

shift (w) = p(w)|u|(w)|u|+1 . . . (w)m−(|u|+k)+1q

with

p =

{
(w)2 . . . (w)|u|−1 , if (w)1 = 0
0|u|−1 , otherwise

and

q =

{
(w)m−(|u|+k)+2 . . . (w)m0 , if w /∈ (X ∪ 0)∗ · 0|u|+k−1

0ku , otherwise.

The result of this operation is to shift each letter of w one step to the left, and introduce
u from the right if there is enough space. Proper suffixes or prefixes of u on the right or
left are not allowed and are replaced by 0’s. For example for u = aba and k = 2

shift (aba00aba00aba0000) = 0000aba00aba00aba.

We now proceed in the following way

• First construct a R-L-table using u and k.

• Connect the parts of this R-L-table with the help of special connection-pieces.

The idea is to use u and k ≥ 1 in such a way that the u ś separated by k 0′s are inserted
as much as possible. Do it as much as possible in the first row. Then the other rows
with odd numbers are generated with the help of the defined shift-operation. To get the
third row we apply it two times to the first row. Next we apply it two times to the third
row yielding the fifth row and so on.

8

Rows with even numbers remain empty (filled with 0’s) more precisely :
For any odd m with |u| ≤ m we define a (m,m)-R-L-table A by

• RA2i = 0m
(
1 ≤ i ≤

⌊
m
2

⌋)
• RA1 = 0r

(
u0k

)s
u

with r = (m− |u|) mod (|u|+ k)
and s = (m− |u|) div (|u|+ k)

• RA2i+1 = shift2 (RA2i)
(
1 ≤ i ≤

⌊
m
2

⌋)
For the sake of adding connection-pieces any u in A which starts in the second column
will be shifted one row to the bottom and one column to the left. Analogous on the
right side, every u ending in column m− 1 is shifted one row to the top and one column
to the right. Finally in the case that m is even every u in row m− 1 is shifted one row
to the bottom and one column to the left.

The resulting (m,m)-R-L-table A′ is shown as part of the table in table 2, represented
by horizontal and dotted lines.

Obviously

def (A′) ≤ m2 − |u| · p · m

2
,

because u occurs in every second row at least p =

(
m

|u|+ k
− 1

)
times.

Next, we build up the vertical structure:

(i) Fix the first letter of every u in A′ and go vertically down with the word (u)2(u)3 . . . (u)|u|,
if u starts in the upper left triangle of A′.

(ii) Fix the last letter of u and go on vertically up with the word (u)|u|−1(u)|u|−2 . . . (u)1,
if u finishes in the lower right triangle of A′.

More precisely A′′ is the (m,m)-R-L-table constructed from A′ with the following prop-
erties:

(i) ∀ 1 ≤ i, j ≤ m, i + j ≤ m

A′ [i, j] A′ [i, j + 1] . . . A′ [i, j + |u| − 1] = u ⇔ A′′ [i, j] A′′ [i + 1, j] . . . A′′ [i + |u| − 1, j] = u

and

(ii) ∀ 1 ≤ i ≤ m− |u|+ 1 , |u| ≤ j ≤ m , i + j + |u| − 1 > m

A′ [i, j] A′ [i, j + 1] . . . A′ [i, j + |u| − 1] = u
⇔ A′′ [i, j + |u| − 1] A′′ [i− 1, j + |u| − 1] . . . A′′ [i− |u| − 1, j + |u| − 1] = u

9

3 Infinite languages over arbitrary alphabets

Table 2: (m,m)−R− L− table A′′ with m = 64, |u| = 14, k = 5.

(iii) For all other entries : A′′[i, j] = A′[i, j]

Remember that first (u) and last (u) are fixed letters.

The new (m,m)-R-L-table is A′′. Table 2 shows the result of all these transformations.
The additional words are indicated by vertical lines. A simple calculation shows

def (A′′) ≤ def (A′)−
⌊
|u|
2

⌋
· p · m

2
.

The reason is, that there are at least p · m
2

horizontal u′s in A′. Every of these u′s is

completed by a vertical u. Every time a new vertical u is added at least
⌊
|u|
2

⌋
0’s are

replaced by letters of u.

10

Therefore we get

def (A′′) ≤ m2 −
(
|u|+

⌊
|u|
2

⌋)
· p · m

2

≤ m2 − 3|u| − 1

4

(
m

|u|+ k
− 1

)
·m

= m2 ·
(

1− 3

4

|u|
|u|+ k

+
1

4(|u|+ k)
+

3|u| − 1

4m

)
= m2 ·

(
1

4
+

3

4

k

|u|+ k
+

1

4(|u|+ k)
+

3|u| − 1

4m

)
≤ m2

[
1

4
+

k

|u|
+
|u|
m

]
It remains to show that we can connect all these trapezoidal areas, which are indeed
connected by the use of the single word u. The failing connections are achieved adjusting
the distance of the areas given by the number k.

Choose v ∈ L with |v| ≥ 3 as short as possible. Let #(X) = t. Then every w ∈ L with
|w| ≥ |v| · t has a decomposition w = w0a0 . . . wtatw

′ where a0, . . . , at ∈ X, w0, . . . , wt ∈
X |v|−1 and w′ ∈ X∗. Clearly, ai = aj for some 0 ≤ i < j ≤ t, since there are only t
different letters in X. Hence our infinite language L has a representation

L = {w ∈ L | |w| < |v| · t}
∪

⋃
0≤i<j≤t

{w0a0 . . . wtatw
′ | w0a0 . . . wtatw

′ ∈ L, a0, . . . , at ∈ X,
w0, . . . , wt ∈ X |v|−1, w′ ∈ X and ai = aj}

which means that at least one of the components of the union must be infinite.

In conclusion there is a letter a ∈ X and a number l ∈ N such that

L′ = {w1aw2aw3 | w1aw2aw3 ∈ L, w1, w2, w3 ∈ X∗,

|w1| ≥ |v| − 1, |w3| ≥ |v| − 1 and |w2| = l(|v| − 1)− 1}

is infinite. Consider a word u ∈ L′. Then for sufficiently large n a final (n,n)-L-table
Acomp can be constructed in the following way:
Construct the (m,m)-R-L-table A′′ for m = n − 4|u| and k = (2l − 1)(|v| − 1) − 1
according to the rules described above. Why the number k for the distance of the
trapeziodal stripes of A′′ is chosen in this way is explained later.
To connect the trapeziodal stripes of A′′ we create a frame around A′′ of width 2|u|.

First, we number this stripes from the top left corner to the bottom right corner

T1, T2, . . . , T2r

where

r = bm− |u|
|u|+ k

c+ 1.

11

3 Infinite languages over arbitrary alphabets

Now we connect every stripe with odd number with the next stripe by a special piece
on the top respectively on the right of the frame and every stripe with even number
with the next stripe on the left respectively on the bottom of the frame. To simplify
the description of the process we add a further vertical u ending at the last letter of the
last u in row 1 of A′′, in the case when r is uneven. In the other case add a horizontal
u ending at the last letter of the last u in column 1 of A′′.

For all r
2

> z ≥ 1 we use the following connection pieces:

• Tr−2z+1 and Tr−2z, top border: see table 3

Table 3: Tr−2z+1 and Tr−2z, top border

• Tr−2(z−1) and Tr−2z+1, left border:
the corresponding connection piece is obtained from table 1 reflecting it on the
y-axis and then turning it 90◦ to the left.

For all 1 ≤ z < r
2
:

• Tr+2z−1 and Tr+2z, bottom border: see table 4

• Tr+2z and Tr+2z+1,right border :
like in the last case the corresponding connection piece is obtained reflecting table
2 on the y-axis and then turning it 90◦ to the left.

12

Table 4: Tr+2z−1 and Tr+2z, bottom border

Table 5 shows the resulting (n, n)-L-table Acomp for

n = 64 + 4|u|,
|u| = 14,

l = 1,

|v| = 7 (i.e. k = (2l − 1)(|v| − 1)− 1 = 5)

and (u)4 = (u)10 .

Estimating the defect of the final Acomp we get for m = n− 4|u|

def (Acomp) ≤ 4 · 2|u| · n + 2 · 2|u| ·m + def (A′′) .

=⇒

def (n, L)

n2
≤ 1

n2

[
12|u|+ m2

(
1

4
+

k

|u|
+

2|u|
n

)]
≤ 1

n2

[
12|u| · n + n2

(
1

4
+

k

|u|
+

2|u|
n

)]
≤ 1

4
+

k

|u|
+

14|u|
n

=⇒
∀ε > 0 :

def (n, L)

n2
≤ 1

4
+ ε

13

3 Infinite languages over arbitrary alphabets

for u ∈ L with |u| ≥ 2k

ε

and all n ≥ 1

4
|u|2

=⇒
lim sup

def (n, L)

n2
= δ̄(L) ≤ 1

4

Table 5: Acomp

14

4 Languages over one-letter alphabets

The whole situation looks quite different, if we consider languages over one-letter alpha-
bets. In this case we get the following result.

Theorem 4.1 If L ⊆ {a}∗ is infinite, then δ̄(L) = 0.

Proof If A is a (l,n)-matrix we denote by Arev the matrix obtained from A by converting
A at the “middle”column, that means

Arev [i, j] = A [i, n− j + 1] (1 ≤ i ≤ l, 1 ≤ j ≤ n) .

We now construct “puzzle”-pieces which are the main blocks of our construction.

Consider u, w ∈ {a}∗ with |u|, |w| ≥ 4, then M ′ (u, w) is a (|u|+ 4, |w|+ 4) -matrix
defined by

M ′ (u, w) [i, j] =

{
a 2 < i ≤ |u|+ 2 and 2 < j < |w|+ 2
0 otherwise,

Using M ′ (u, w) we define M (u, w) by

M (u, w) [i, j] =



a if (i, j) ∈ {(1, |w|+ 2) , (2, |w|+ 2) ,
(4, |w|+ 3) , (|u|+ 1, 2) ,
(|u|+ 3, 3) , (|u|+ 4, 3)}

0 if (i, j) ∈ {(4, 3) , (|u|+ 1, |w|+ 2)}

M ′ (u, w) [i, j] otherwise.

For |u| = 5 and |w| = 6 we get the example

Table 6: “puzzle”-pieces

15

4 Languages over one-letter alphabets

If u, w ∈ L, then M (u, w) is an L-table with

def (M (u, w)) = (|u|+ 4) (|w|+ 4)− (|u| · |w|+ 4) .

Consider a wordsequence σ = (u1, . . . , uk) which is ordered (i.e. |ui| ≤ |ui+1|) and
ui ∈ {a}∗ for 1 ≤ i ≤ k. Choose a number m ≥ 1. Define the R-L-table A(σ, m)
in the following way:

Table 7: A (σ, m)

Now, if l is the size of A(σ, m) then

def (A(σ, m)) = l2 −
∑

1≤i,j≤k

(|ui| · |uj|+ 4)

In the special case when there is a word u ∈ L such that ui = u(1 ≤ i ≤ k)

def (A(σ, m)) = l2 − k2(|u|2 + 4) ≤ l2 − k2|u|2.

16

To get an L-Table we choose a word v with |v| ≥ 7. Then for m = |v| − 4 we
connect the parts of A (σ, m), by an H-type table of size (|v|, |v|) with respect to
connection points shown in table 5. To the left and the right we only use an I-type
table of size (1, |v|).

To define B (σ, m) we proceed as it shown in the following table:

Table 8: Connection of “puzzle”-pieces with connection points

By construction

def (B (σ, m)) ≤ def (A (σ, m))

Now let L be given according to the assumption of the theorem, i.e. there exist
u, v ∈ L with |u| ≥ 4 and |v| ≥ 7.

Let n ≥ |u|+ 4. Construct the (n, n)-L-table:

17

4 Languages over one-letter alphabets

Table 9: Padding

In the construction

m = |v| − 4,

k =

⌊
n− (|u|+ 4)

|u|+ 4 + m

⌋
+ 1,

σ = (u1, ..., uk) with ui = u(1 ≤ i ≤ k),

x = n− l,

where l = (k − 1)(|u|+ 4 + m) + |v|+ 4 is the size of B (σ, m).

Since

k ≤ n− 1

|u|+ 5

we get

def (C) ≤ n2 − k2|u|2

≤ n2 −
(

n− 1

|u|+ 5

)2

|u|2

= n2 − (n− 1)2 · (|u|+ 5)2 − (10|u|+ 25)

(|u|+ 5)2

≤ 2n− 1 + (n− 1)2 · 10

|u|

Therefore
def ((n, L))

n2
≤ 2

n
+

10

|u|
yielding

def ((n, L))

n2
≤ ε

18

for every n ≥ |u0|
where u0 is the smallest word in L with

|u0| ≥
12

ε

In conclusion δ̄(L) = 0. 2

19

5 Finite languages

5 Finite languages

Finite languages need completely different constructions to obtain “maximal”density. In
the case that there exist a w ∈ L such that w can be decomposed into

w = uxtxv

with
x ∈ X, t 6= 2, |uv| < |t| and u, v, t ∈ X∗,

we can use a construction which resembles the “rook-tour”in chess:

Table 10: Stripe component

T is a (2|w|+ |t| − |uv|, |w|+ |t|+ 1)-matrix.

20

We can build the “rook-tour”out of T with the help of these constructors:

Table 11: “Rook-tour”constructors

21

5 Finite languages

Table 12: Complete “rook-tour”with stripes

Now, the defect of a (n,n)-L-table A constructed with intent to maximize the number
and length of the stripes can be estimated by

def (A) ≤ n2 −
⌊

n− |uxv|
2|tx|

⌋
· 4 ·

⌊
n− |uxv|

2|tx|

⌋
(|w| − 1)

Since

(i) The word w occurs in every stripe

4 ·
⌊

n− |uxv|
2|tx|

⌋
−times.

22

(ii) x is used twice for two “different” w’s.

(iii) Within a (n, n)−matrix A ⌊
n− |uxv|

2|tx|

⌋
stripes can be allocated.

By this

def (n, L) ≤ n2 −
⌊

n− |uxv|
2|tx|

⌋
· 4 ·

⌊
n− |uxv|

2|tx|

⌋
(|w| − 1)

≤ n2 −
(

n− |uxv| − 2|tx|
|tx|

)2

(|w| − 1)

hence

def (n, L)

n2
≤ 1− |w| − 1

|tx|2
+O

(
1

n

)
≤ 1− |tx|+ |uxv| − 1

|tx|2
+O

(
1

n

)
≤ 1− 1

|tx|
+O

(
1

n

)
.

Therefore

Theorem 5.1 If w ∈ L is a word with a decomposition w = uxtxv (x ∈ X, |t| ≥
1, |uv| < |t|, u, t, v ∈ X∗) then

δ (L) ≤ 1− 1

|tx|

Observe, that we used only one single word to construct the whole table. Thus, the
result δ(L) < 1 holds even for languages containing only one word, if this word has the
desired property.
This is not always the case. Consider a language L = {w}, where every letter occurs
only once in w.
In this case the only possibilities to annex a vertical w to a horizontal w respectively
vice versa a horizontal w to a vertical w are shown in table 13. That means: if w starts
at position (i, j) of an arbitrary (n,n)-L-table A then

i′ + j′ = i + j

for every starting point (i′, j′) of every w in A.
Since there is at most one j′ for every i′ fullfilling the equation, there are at most n
possibilities w starts in A. Hence

def (A) ≥ n2 − n · |w|

and we conclude

23

5 Finite languages

Table 13: Possibilities (represented by dotted lines) to annex a vertical (horizontal) w
to a horizontal (vertical) w.

Lemma 5.1 :
For every language L ⊆ X∗ with L = {w}

δ (L) = 1,

if |w|z ≤ 1 for every z ∈ X.

A lower bound can be obtained quite easily. Let L be finite and k = max{|w|
∣∣w ∈ L}.

Consider an (n, n)− L table A, n much larger than k.

Consider a row. This row can in the best case contain n/k words from L, but all these
words must be separated from each other, hence at least n/k − 1 empty entries must
exist in the row. Since there are n rows we get

def (A) ≥ n2

k
− n

Which means

δ(L) ≥ 1

k
.

Lemma 5.2 If L is a finite language, then

δ(L) ≥ 1

max{|w|
∣∣w ∈ L}

24

6 Concluding remarks

The main open research area is to introduce more combinatorial features of languages
to get more refined results.

As an example we look at commutative languages L, which are invariant under wordwise
permutations of letters. Obviously, for infinite commutative languages L δ (L) = 0.
It seems to be possible to transfer the result for infinite languages over an one-letter
alphabet to infinite commutative languages.

Another topic is the density of languages. At the moment we do not see how to use this
concept to get more refined results.

A third aspect would be pumping lemmata, but until now we didn’t get better results
in the general case [2].

25

References

References

[1] U.Brandt, H.K.-G. Walter, Complete Language Tables, Papers on Automata and
Languages VIII. Dep. of Mathematics, Karl Marx University of Economics,
Budapest, 1986 - 3, pp. 13-32.

[2] V. Obermeit, Defekt von Tableaus für kontextfreie Sprachen. Diplomarbeit
am Institut für Theoretische Informatik, Fachbereich Informatik, Technische
Hochschule Darmstadt 1983.

26

